

NLOS Detection and Compensation using a Vector Tracking-based GPS Software Receiver

XU, Bing (Presenter) and HSU, Li-Ta Interdisciplinary Division of Aeronautical and Aviation Engineering The Hong Kong Polytechnic University

Outline

Background and Motivation

Vector Tracking-based NLOS Detection and Correction

Experimental Results and Analysis

Conclusion and Future Work

1. Background and Motivation

Sky-plot with building boundary information in an urban area in HK

- Multipath effect
- None-line-of-sight (NLOS) reception

1. Background and Motivation

 TABLE I Techniques Dealing With NLOS Reception

Category	TECHNIQUES				
Mitigation	Antenna design, e.g., choke-ring antenna				
	Consistency checking, e.g., pseudorange residual, navigation solution				
	Kalman filter-based innovation filtering				
Detection	Hardware-based techniques, e.g., array antenna, dual-polarization antenna, sky- pointing camera, 3-dimentional light detection and ranging (3D LiDAR)				
	Machine learning technique, e.g., elevation angle				
	3D building model				
Correction	Ray tracing-based 3D mapping-aided (3DMA) GNSS positioning, Vector tracking loops (VTL)				

 \Box VDLL + 2nd-order PLL

Code NCO

$$f_{code,k}^{m} = f_{CA} \left(1 - \frac{\hat{\rho}_{k}^{m} - \hat{\rho}_{k-1}^{m}}{c \cdot T_{0}} \right)$$

$$\hat{\sigma}_{k}^{m} = \left\| \mathbf{p}_{k} - \mathbf{p}_{k}^{m} \right\| + \delta \hat{\rho}_{sv,c}^{m} + \delta \hat{\rho}_{I}^{m} - \delta b_{k}$$

Why is VTL capable of detecting and correcting the NLOS reception?

(a)	(b)			Model	NSL Stereo
A _N			Front-	Constellation	GPS L1
		r Man	end	Sampling rate & IF	26 MHz, 6.5 MHz
Point 2				Bandwidth	2 MHz (Double sided)
	Grande Earth			Correlator numbers and spacing (chip)	Normal mode: 3, 0.5 NLOS detection mode: 25, 0.05
(C)			SDR [1]	Pre-detection integration (PDI)	1 ms
	STEREO			Measurement update interval	20 ms
NovAtel 702-GG Antenna	NSL STEREO Front-end	DELL Laptop		PLL bandwidth	20 Hz

 B. Xu and L.-T. Hsu, "Open-source MATLAB code for GPS vector tracking on a software-defined receiver," GPS Solutions, vol. 23, no. 2, 2019.

[∕] Opening Minds ∙ Shaping the Future ∙ 啟迪思維 ∙ 成就未來

 Code discriminator outputs

Prompt correlation

Multi-corrector outputs:

CT

VT

0.6

Multi-corrector outputs:

Epoch (100 ms)

Variance

• Extracted NLOS delay:

NLOS pseudorange delay model [2]:

$$\gamma = \alpha \sec \theta_{ele} \left(1 + \cos 2\theta_{ele} \right) \longrightarrow 26.8 \text{ m}$$

[2] L.-T. Hsu, "Analysis and modeling GPS NLOS effect in highly urbanized area," GPS Solutions, vol. 22, no. 1, 2018.

NLOS correction results:

Epochs	1~1800	1800~3400	3400~3600	3600~5200
VT	6.43	8.39	13.64	8.47
СТ	12.14	16.22	45.41	14.67

• PRN 22:

- Near the building boundary
- Diffraction region [3]

[3] Wang L., Groves, P. D., and Ziebart, M. K., "GNSS shadow matching: improving urban positioning accuracy using a 3D city model with optimized visibility scoring scheme," NAVIGATION, Vol. 60, No. 3, 2013, pp. 195-207.

✓ Opening Minds • Shaping the Future • 啟迪思維 • 成就未來

4. Conclusion and Future Work

- Conclusion:
 - Vector tracking is capable of detecting and correcting the NLOS reception at the signal processing level without any additional aiding.
- Future work:
 - ➤ Give the principle of the proposed method mathematically
 - Multipath detection and correction